Performance of ChatGPT on the Taiwan urology board examination: insights into current strengths and shortcomings

World J Urol. 2024 Apr 23;42(1):250. doi: 10.1007/s00345-024-04957-8.

Abstract

Purpose: To compare ChatGPT-4 and ChatGPT-3.5's performance on Taiwan urology board examination (TUBE), focusing on answer accuracy, explanation consistency, and uncertainty management tactics to minimize score penalties from incorrect responses across 12 urology domains.

Methods: 450 multiple-choice questions from TUBE(2020-2022) were presented to two models. Three urologists assessed correctness and consistency of each response. Accuracy quantifies correct answers; consistency assesses logic and coherence in explanations out of total responses, alongside a penalty reduction experiment with prompt variations. Univariate logistic regression was applied for subgroup comparison.

Results: ChatGPT-4 showed strengths in urology, achieved an overall accuracy of 57.8%, with annual accuracies of 64.7% (2020), 58.0% (2021), and 50.7% (2022), significantly surpassing ChatGPT-3.5 (33.8%, OR = 2.68, 95% CI [2.05-3.52]). It could have passed the TUBE written exams if solely based on accuracy but failed in the final score due to penalties. ChatGPT-4 displayed a declining accuracy trend over time. Variability in accuracy across 12 urological domains was noted, with more frequently updated knowledge domains showing lower accuracy (53.2% vs. 62.2%, OR = 0.69, p = 0.05). A high consistency rate of 91.6% in explanations across all domains indicates reliable delivery of coherent and logical information. The simple prompt outperformed strategy-based prompts in accuracy (60% vs. 40%, p = 0.016), highlighting ChatGPT's limitations in its inability to accurately self-assess uncertainty and a tendency towards overconfidence, which may hinder medical decision-making.

Conclusions: ChatGPT-4's high accuracy and consistent explanations in urology board examination demonstrate its potential in medical information processing. However, its limitations in self-assessment and overconfidence necessitate caution in its application, especially for inexperienced users. These insights call for ongoing advancements of urology-specific AI tools.

Keywords: Artificial intelligence; ChatGPT; Internet information; Large language model; Urology.

Publication types

  • Comparative Study

MeSH terms

  • Clinical Competence
  • Educational Measurement* / methods
  • Humans
  • Specialty Boards
  • Taiwan
  • Urology*