No Common Candidate Genes for Resistance to Fusarium graminearum, F. proliferatum, F. sporotrichioides, and F. subglutinans in Soybean Accessions from Maturity Groups 0 and I: Findings from Genome-wide Association Mapping

Plant Dis. 2024 Sep;108(9):2722-2730. doi: 10.1094/PDIS-02-24-0477-RE. Epub 2024 Sep 9.

Abstract

Seedling diseases and root rot, caused by species of Fusarium, can limit soybean (Glycine max L.) production in the United States. Currently, there are few commercially available cultivars resistant to Fusarium. This study was conducted to assess the resistance of soybean maturity group (MG) accessions from 0 and I to Fusarium proliferatum, F. sporotrichioides, and F. subglutinans, as well as to identify common quantitative trait loci (QTLs) for resistance to these pathogens, in addition to F. graminearum, using a genome-wide association study (GWAS). A total of 155, 91, and 48 accessions from the United States Department of Agriculture (USDA) soybean germplasm collection from MG 0 and I were screened with a single isolate each of F. proliferatum, F. sporotrichioides, and F. subglutinans, respectively, using the inoculum layer inoculation method in the greenhouse. The disease severity was assessed 21 days postinoculation and analyzed using nonparametric statistics to determine the relative treatment effects (RTEs). Eleven and seven accessions showed significantly lower RTEs when inoculated with F. proliferatum and F. subglutinans, respectively, compared with the susceptible cultivar 'Williams 82'. One accession was significantly less susceptible to both F. proliferatum and F. subglutinans. The GWAS conducted with 41,985 single-nucleotide markers identified one QTL associated with resistance to both F. proliferatum and F. sporotrichioides, as well as another QTL for resistance to both F. subglutinans and F. graminearum. However, no common QTLs were identified for the four pathogens. The USDA accessions and QTLs identified in this study can be utilized to selectively breed resistance to multiple species of Fusarium.[Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.

Keywords: cultivar/resistance; disease management; field crops; fungi; oilseeds and legumes.

MeSH terms

  • Chromosome Mapping
  • Disease Resistance* / genetics
  • Fusarium* / genetics
  • Fusarium* / physiology
  • Genome-Wide Association Study*
  • Glycine max* / genetics
  • Glycine max* / microbiology
  • Plant Diseases* / genetics
  • Plant Diseases* / immunology
  • Plant Diseases* / microbiology
  • Quantitative Trait Loci* / genetics

Supplementary concepts

  • Fusarium graminearum