Programmable multiphoton quantum interference in a single spatial mode

Sci Adv. 2024 Apr 19;10(16):eadj0993. doi: 10.1126/sciadv.adj0993. Epub 2024 Apr 19.

Abstract

The interference of nonclassical states of light enables quantum-enhanced applications reaching from metrology to computation. Most commonly, the polarization or spatial location of single photons are used as addressable degrees of freedom for turning these applications into praxis. However, the scale-up for the processing of a large number of photons of these architectures is very resource-demanding due to the rapidly increasing number of components, such as optical elements, photon sources, and detectors. Here, we demonstrate a resource-efficient architecture for multiphoton processing based on time-bin encoding in a single spatial mode. We use an efficient quantum dot single-photon source and a fast programmable time-bin interferometer to observe the interference of up to eight photons in 16 modes, all recorded only with one detector, thus considerably reducing the physical overhead previously needed for achieving equivalent tasks. Our results can form the basis for a future universal photonics quantum processor operating in a single spatial mode.