Background: Dapagliflozin, a sodium-glucose cotransporter 2 inhibitor, is an epochal oral antidiabetic drug that improves cardiorenal outcomes. However, the effect of early dapagliflozin intervention on left ventricular (LV) remodeling in patients with type 2 diabetes free from cardiovascular disease remains unclear.
Methods and results: The ELUCIDATE trial was a prospective, open-label, randomized, active-controlled study that enrolled 76 patients with asymptomatic type 2 diabetes with LV ejection fraction ≥50%, randomized to the dapagliflozin 10 mg/day add-on or standard-of-care group. Speckle-tracking echocardiography-based measurements of the cardiac global longitudinal strain were performed at baseline and 24 weeks after treatment initiation. Patients who received dapagliflozin had a greater reduction in LV dimension (1.68 mm [95% CI, 0.53-2.84]; P=0.005), LV end-systolic volume (5.51 mL [95% CI, 0.86-10.17]; P=0.021), and LV mass index (4.25 g/m2.7 [95% CI, 2.42-6.09]; P<0.0001) compared with standard of care in absolute mean differences. Dapagliflozin add-on therapy led to a significant LV global longitudinal strain increment (0.74% [95% CI, 1.00-0.49]; P<0.0001) and improved LV systolic and early diastolic strain rates (0.27/s [95% CI, 0.17-0.60]; and 0.11/s [95% CI, 0.06-0.16], respectively; both P<0.0001) but not in global circumferential strain. No significant changes were found in insulin resistance, NT-proBNP (N-terminal pro-B-type natriuretic peptide) levels, or other biomarkers at 6 months after the dapagliflozin administration.
Conclusions: Dapagliflozin add-on therapy could lead to more favorable cardiac remodeling accompanied by enhanced cardiac mechanical function among patients with asymptomatic type 2 diabetes. Our findings provide evidence of the efficacy of dapagliflozin use for the primary prevention of diabetic cardiomyopathy.
Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT03871621.
Keywords: clinical trial; dapagliflozin; echocardiography; sodium–glucose cotransporter 2 inhibitors; type 2 diabetes; ventricular remodeling.