UPF1 regulates mRNA stability by sensing poorly translated coding sequences

Cell Rep. 2024 Apr 23;43(4):114074. doi: 10.1016/j.celrep.2024.114074. Epub 2024 Apr 15.

Abstract

Post-transcriptional mRNA regulation shapes gene expression, yet how cis-elements and mRNA translation interface to regulate mRNA stability is poorly understood. We find that the strength of translation initiation, upstream open reading frame (uORF) content, codon optimality, AU-rich elements, microRNA binding sites, and open reading frame (ORF) length function combinatorially to regulate mRNA stability. Machine-learning analysis identifies ORF length as the most important conserved feature regulating mRNA decay. We find that Upf1 binds poorly translated and untranslated ORFs, which are associated with a higher decay rate, including mRNAs with uORFs and those with exposed ORFs after stop codons. Our study emphasizes Upf1's converging role in surveilling mRNAs with exposed ORFs that are poorly translated, such as mRNAs with long ORFs, ORF-like 3' UTRs, and mRNAs containing uORFs. We propose that Upf1 regulation of poorly/untranslated ORFs provides a unifying mechanism of surveillance in regulating mRNA stability and homeostasis in an exon-junction complex (EJC)-independent nonsense-mediated decay (NMD) pathway that we term ORF-mediated decay (OMD).

Keywords: CP: Molecular biology; GC-richness; NMD; ORF length; UPF1; mRNA decay; mRNA homeostasis; mRNA translation; oORF; uORF.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural

MeSH terms

  • 3' Untranslated Regions / genetics
  • HEK293 Cells
  • Humans
  • Nonsense Mediated mRNA Decay
  • Open Reading Frames / genetics
  • Protein Biosynthesis
  • RNA Helicases* / genetics
  • RNA Helicases* / metabolism
  • RNA Stability*
  • RNA, Messenger / genetics
  • RNA, Messenger / metabolism
  • Trans-Activators* / genetics
  • Trans-Activators* / metabolism

Substances

  • 3' Untranslated Regions
  • RNA Helicases
  • RNA, Messenger
  • Trans-Activators
  • UPF1 protein, human