A Blueprint for Multi-use Disease Modeling in Health Economics: Results from Two Expert-Panel Consultations

Pharmacoeconomics. 2024 Jul;42(7):797-810. doi: 10.1007/s40273-024-01376-w. Epub 2024 Apr 13.

Abstract

Background: The current use of health economic decision models in HTA is mostly confined to single use cases, which may be inefficient and result in little consistency over different treatment comparisons, and consequently inconsistent health policy decisions, for the same disorder. Multi-use disease models (MUDMs) (other terms: generic models, whole disease models, disease models) may offer a solution. However, much is uncertain about their definition and application. The current research aimed to develop a blueprint for the application of MUDMs.

Methods: We elicited expert opinion using a two-round modified Delphi process. The panel consisted of experts and stakeholders in health economic modelling from various professional backgrounds. The first questionnaire concerned definition, terminology, potential applications, issues and recommendations for MUDMs and was based on an exploratory scoping review. In the second round, the panel members were asked to reconsider their input, based on feedback regarding first-round results, and to score issues and recommendations for priority. Finally, adding input from external advisors and policy makers in a structured way, an overview of issues and challenges was developed during two team consensus meetings.

Results: In total, 54 respondents contributed to the panel results. The term 'multi-use disease models' was proposed and agreed upon, and a definition was provided. The panel prioritized 10 potential applications (with comparing alternative policies and supporting resource allocation decisions as the top 2), while 20 issues (with model transparency and stakeholders' roles as the top 2) were identified as challenges. Opinions on potential features concerning operationalization of multi-use models were given, with 11 of these subsequently receiving high priority scores (regular updates and revalidation after updates were the top 2).

Conclusions: MUDMs would improve on current decision support regarding cost-effectiveness information. Given feasibility challenges, this would be most relevant for diseases with multiple treatments, large burden of disease and requiring more complex models. The current overview offers policy makers a starting point to organize the development, use, and maintenance of MUDMs and to support choices concerning which diseases and policy decisions they will be helpful for.

MeSH terms

  • Consensus
  • Decision Making
  • Delphi Technique*
  • Economics, Medical
  • Health Policy*
  • Humans
  • Models, Economic*
  • Surveys and Questionnaires
  • Technology Assessment, Biomedical*