Recombinant human leukocyte interferon (IFN-alpha A) inhibits growth of the human promyelocytic leukemic cell line HL-60 without inducing these cells to differentiate terminally. When IFN-alpha A is combined with agents capable of inducing differentiation in HL-60 cells, such as 12-O-tetradecanoyl-phorbol-13-acetate (TPA), cis or trans retinoic acid (RA) or dimethylsulfoxide (DMSO), growth suppression and induction of differentiation are dramatically increased. By growing HL-60 cells in increasing concentrations of TPA, RA, or DMSO, a series of sublines have been developed which are resistant to the usual growth inhibition and induction of differentiation seen when wild type HL-60 cells are exposed to these agents. Treatment of these resistant HL-60 cells with the combination of IFN-alpha A and the appropriate inducer results, however, in a synergistic suppression in cell growth and a concomitant induction of terminal differentiation. The ability of interferon to interact synergistically with agents which promote leukemic cell maturation may represents a novel means of reducing resistant leukemic cell populations.