Background: Fiber-reinforced composites (FRCs) have been proposed as an alternative to traditional metal alloys for the realization of frameworks in full-arch implant-supported prostheses. The aim of the present in vitro study was to evaluate the deflection under load of seven prostheses endowed with frameworks made of different materials, including different types of fiber-reinforced composites (FRCs). Methods: A master cast with four implant analogues in correspondence with the two lateral incisors and the two first molars was used to create full-arch fixed prostheses with the same shape and different materials. Prostheses were made of the following different materials (framework+veneering material): gold alloy+resin (Au+R), titanium+resin (Ti+R), FRC with multidirectional carbon fibers+resin (ICFRC+AR), FRC with unidirectional carbon fibers+composite (UCFRC+C), FRC with glass fibers+resin (GFRC+AR), FRC with glass fibers+composite (GFRC+C), and resin (R, fully acrylic prosthesis). Flexural tests were conducted using a Zwick/Roell Z 0.5 machine, and the deflection of the lower surface of the prosthesis was measured in order to obtain load/deflection graphs. Results: Greater rigidity and less deflection were recorded for UCFRC+C and GFRC+C, followed by Ti+R and Au+R. The greatest deformations were observed for resin alone, ICFRC+R, and GFRC+R. The results were slightly different in the incisal region, probably due to the greater amount of veneering material in this area. Conclusions: When used to realize full-arch frameworks, Au and Ti allow for predictable mechanical behavior with gradual deformations with increasing load. UCFRC also demonstrated good outcomes and less deflection than ICFRCs when loaded. The GFRC full-arch framework may be a valid alternative, although it showed greater deflections. Further studies are needed in order to evaluate how different prosthesis designs and material thicknesses might affect the outcomes.
Keywords: dental implants; fiber-reinforced composites; full-arch framework; full-mouth reconstruction; prosthodontics.