FM-indexes are crucial data structures in DNA alignment, but searching with them usually takes at least one random access per character in the query pattern. Ferragina and Fischer [1] observed in 2007 that word-based indexes often use fewer random accesses than character-based indexes, and thus support faster searches. Since DNA lacks natural word-boundaries, however, it is necessary to parse it somehow before applying word-based FM-indexing. In 2022, Deng et al. [2] proposed parsing genomic data by induced suffix sorting, and showed that the resulting word-based FM-indexes support faster counting queries than standard FM-indexes when patterns are a few thousand characters or longer. In this paper we show that using prefix-free parsing-which takes parameters that let us tune the average length of the phrases-instead of induced suffix sorting, gives a significant speedup for patterns of only a few hundred characters. We implement our method and demonstrate it is between 3 and 18 times faster than competing methods on queries to GRCh38, and is consistently faster on queries made to 25,000, 50,000 and 100,000 SARS-CoV-2 genomes. Hence, it seems our method accelerates the performance of count over all state-of-the-art methods with a moderate increase in the memory. The source code for is available at https://github.com/AaronHong1024/afm .
Keywords: FM-index; Pangenomics; Random access; Word-based indexing.
© 2024. The Author(s).