Combinatorially restricted computational design of protein-protein interfaces to produce IgG heterodimers

Sci Adv. 2024 Apr 12;10(15):eadk8157. doi: 10.1126/sciadv.adk8157. Epub 2024 Apr 10.

Abstract

Redesigning protein-protein interfaces is an important tool for developing therapeutic strategies. Interfaces can be redesigned by in silico screening, which allows for efficient sampling of a large protein space before experimental validation. However, computational costs limit the number of combinations that can be reasonably sampled. Here, we present combinatorial tyrosine (Y)/serine (S) selection (combYSelect), a computational approach combining in silico determination of the change in binding free energy (ΔΔG) of an interface with a highly restricted library composed of just two amino acids, tyrosine and serine. We used combYSelect to design two immunoglobulin G (IgG) heterodimers-combYSelect1 (L368S/D399Y-K409S/T411Y) and combYSelect2 (D399Y/K447S-K409S/T411Y)-that exhibit near-optimal heterodimerization, without affecting IgG stability or function. We solved the crystal structures of these heterodimers and found that dynamic π-stacking interactions and polar contacts drive preferential heterodimeric interactions. Finally, we demonstrated the utility of our combYSelect heterodimers by engineering both a bispecific antibody and a cytokine trap for two unique therapeutic applications.

MeSH terms

  • Antibodies, Bispecific*
  • Computational Biology
  • Dimerization
  • Immunoglobulin G*
  • Serine / metabolism
  • Tyrosine / metabolism

Substances

  • Immunoglobulin G
  • Antibodies, Bispecific
  • Tyrosine
  • Serine