Divergent antibody recognition profiles are generated by protective mRNA vaccines against Marburg and Ravn viruses

Res Sq [Preprint]. 2024 Mar 26:rs.3.rs-4087897. doi: 10.21203/rs.3.rs-4087897/v1.

Abstract

The first-ever recent Marburg virus (MARV) outbreak in Ghana, West Africa and Equatorial Guinea has refocused efforts towards the development of therapeutics since no vaccine or treatment has been approved. mRNA vaccines were proven successful in a pandemic-response to severe acute respiratory syndrome coronavirus-2, making it an appealing vaccine platform to target highly pathogenic emerging viruses. Here, 1-methyl-pseudouridine-modified mRNA vaccines formulated in lipid nanoparticles (LNP) were developed against MARV and the closely-related Ravn virus (RAVV), which were based on sequences of the glycoproteins (GP) of the two viruses. Vaccination of guinea pigs with both vaccines elicited robust binding and neutralizing antibodies and conferred complete protection against virus replication, disease and death. The study characterized antibody responses to identify disparities in the binding and functional profiles between the two viruses and regions in GP that are broadly reactive. For the first time, the glycan cap is highlighted as an immunoreactive site for marburgviruses, inducing both binding and neutralizing antibody responses that are dependent on the virus. Profiling the antibody responses against the two viruses provided an insight into how antigenic differences may affect the response towards conserved GP regions which would otherwise be predicted to be cross-reactive and has implications for the future design of broadly protective vaccines. The results support the use of mRNA-LNPs against pathogens of high consequence.

Publication types

  • Preprint