Structural heart disease interventions rely heavily on preprocedural planning and simulation to improve procedural outcomes and predict and prevent potential procedural complications. Modeling technologies, namely 3-dimensional (3D) printing and computational modeling, are nowadays increasingly used to predict the interaction between cardiac anatomy and implantable devices. Such models play a role in patient education, operator training, procedural simulation, and appropriate device selection. However, current modeling is often limited by the replication of a single static configuration within a dynamic cardiac cycle. Recognizing that health systems may face technical and economic limitations to the creation of "in-house" 3D-printed models, structural heart teams are pivoting to the use of computational software for modeling purposes.
Keywords: 3D printing; computation modeling; physical modeling; structural heart interventions.
Copyright © 2024 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.