Introduction: Huntington's disease (HD) is a hereditary neurodegenerative disease, currently lacking disease-modifying treatments. Biomarkers are needed for objective assessment of disease progression. Evidence supports both complex protein aggregation and astrocyte activation in HD. This study assesses the 42 amino acid long amyloid beta (Aβ42) and glial fibrillary acidic protein (GFAP) as potential biomarkers in the cerebrospinal fluid (CSF) of HD mutation carriers.
Methods: CSF from participants was obtained from three sites in Sweden. Clinical symptoms were graded with the composite Unified Huntington's disease rating scale (cUHDRS). Protein concentrations were measured using ELISA. Pearson correlations were calculated to assess disease progression association. Results were adjusted for age and collection site.
Results: The study enrolled 28 manifest HD patients (ManHD), 13 premanifest HD gene-expansion carriers (PreHD) and 20 controls. Aβ42 levels did not differ between groups and there was no correlation with measures of disease progression. GFAP concentration was higher in ManHD (424 ng/l, SD 253) compared with both PreHD (266 ng/l, SD 92.4) and controls (208 ng/l, SD 83.7). GFAP correlated with both cUHDRS (r = -0.77, p < 0.001), and 5-year risk of disease onset (r = 0.70, p = 0.008).
Conclusion: We provide evidence that indicates CSF Aβ42 has limited potential as a biomarker for HD. GFAP is a potential biomarker of progression in HD. Validation in larger cohorts measuring GFAP in blood and CSF would be of interest.
Keywords: Biomarker; Cerebrospinal fluid; Genetics; Huntington's disease; Neurodegeneration.
Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.