Herein, a novel voltammetry taste sensor array (VTSA) using pencil graphite electrode, screen-printed electrode, and glassy carbon electrode was used to identify heavy metals (HM) including Cad, Pb, Sn and Ni in soybean and rapeseed oils. HMs were added to edible oils at three concentrations of 0.05, 0.1 and 0.25 ppm, and then, the output of the device was classified using a chemometric classification method. According to the principal component analysis results, PG electrode explains 96% and 81% of the variance between the data in rapeseed and soybean edible oils, respectively. Additionally, the SP electrode explains 91% of the variance between the data in rapeseed and soybean oils. Moreover, the GC electrode explains 100% and 99% of the variance between the data in rapeseed and soybean edible oils, respectively. K-nearest neighbor exhibited high capability in classifying HMs in edible oils. In addition, partial least squares in the combine of VTSA shows a predict 99% in rapeseed oil. The best electrode for soybean edible oil was GC.
Keywords: Chemometric; Cyclic voltammetry; E-tongue; Food security; Taste sensor.
© Association of Food Scientists & Technologists (India) 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.