Brain signal variability and executive functions across the life span

Netw Neurosci. 2024 Apr 1;8(1):226-240. doi: 10.1162/netn_a_00347. eCollection 2024.

Abstract

Neural variability is thought to facilitate survival through flexible adaptation to changing environmental demands. In humans, such capacity for flexible adaptation may manifest as fluid reasoning, inhibition of automatic responses, and mental set-switching-skills falling under the broad domain of executive functions that fluctuate over the life span. Neural variability can be quantified via the BOLD signal in resting-state fMRI. Variability of large-scale brain networks is posited to underpin complex cognitive activities requiring interactions between multiple brain regions. Few studies have examined the extent to which network-level brain signal variability across the life span maps onto high-level processes under the umbrella of executive functions. The present study leveraged a large publicly available neuroimaging dataset to investigate the relationship between signal variability and executive functions across the life span. Associations between brain signal variability and executive functions shifted as a function of age. Limbic-specific variability was consistently associated with greater performance across subcomponents of executive functions. Associations between executive function subcomponents and network-level variability of the default mode and central executive networks, as well as whole-brain variability, varied across the life span. Findings suggest that brain signal variability may help to explain to age-related differences in executive functions across the life span.

Keywords: Brain signal variability; Cognitive flexibility; Executive functions; Life span; Resting-state fMRI.

Plain language summary

Traditionally, regional variability in brain signals has been viewed as a source of noise in human neuroimaging research. Our study demonstrates that brain signal variability may contain meaningful information related to psychological processes. We demonstrate that brain signal variability, particularly whole-brain variability, may serve as a reliable indicator of cognitive functions across the life span. Global variability and network-level variability play differing roles in supporting executive functions. Findings suggest that brain signal variability serves as a meaningful indicator of development and cognitive aging.