A novel long non-coding RNA SLNCR1 promotes proliferation, migration, and invasion of melanoma via transcriptionally regulating SOX5

Cell Death Discov. 2024 Apr 1;10(1):160. doi: 10.1038/s41420-024-01922-7.

Abstract

Steroid receptor RNA activator (SRA)-like non-coding RNA (SLNCR1) has been implicated in various tumorigenic processes, but the precise regulatory role in melanoma progression remains uncertain. We performed a comprehensive analysis to investigate the prognostic value of SLNCR1 expression in patients with melanoma by TCGA database and melanoma tissue samples via the Kaplan-Meier method. Subsequently, we conducted qRT-PCR and Fluorescence in Situ Hybridization (FISH) assays to identify SLNCR1 expression levels and localization in tissues and cells, respectively. Loss-of-function assays utilizing shRNAs vectors were used to investigate the potential impact of SLNCR1. Our data showed that SLNCR1 is significantly up-regulated in human malignant melanoma tissues and cell lines and functions as an oncogene. Silencing of SLNCR1 suppressed melanoma cell proliferation, migration, invasion, and inhibited tumorigenesis in a mouse xenograft model. Additionally, we employed bioinformatic predictive analysis, combined with dual-luciferase reporter analysis and functional rescue assays, to elucidate the mechanistic target of the SLNCR1/SOX5 axis in melanoma. Mechanistically, we discovered that SLNCR1 promotes EMT of human melanoma by targeting SOX5, as downregulation of SLNCR1 expression leads to a decrease in SOX5 protein levels and inhibits melanoma tumorigenesis. Our research offers promising insights for more precise diagnosis and treatment of human melanoma.