Follicular lymphoma (FL), the most common indolent B-cell lymphoma, develops over decades before manifesting as overt disease. BCL2 overexpression by t(14;18) confers a survival advantage to B cells during the germinal center reaction, and abnormalities in epigenetic modifier genes lead to desynchronization of gene expression changes in germinal center B cells. Studies in mouse models have shown that BCL2 overexpression and epigenetic deregulation in B cells cooperatively promote lymphomagenesis. The immune microenvironment also plays an essential role in the biology of FL, and many molecular prognostic indicators based on the immune microenvironment have been proposed. However, high-risk gene signatures do not appear to be consistent between patients receiving different chemotherapies. FL cells frequently carry N-linked glycosylation motifs within the immunoglobulin gene, leading to chronic activation of the B-cell receptor (BCR). Recent evidence suggests that this chronic BCR signaling drives FL polarization toward a dark-zone phenotype and promotes clonal evolution. Since both epigenetic and post-transcriptional modifications of B cells have been implicated in the early stage of FL development, it may be possible to use novel non-chemotherapeutic approaches that interfere with the immunobiology in treatment or early prevention of FL.
Keywords: EZH2; Epigenetic deregulation; Follicular lymphoma; Germinal center; Immune microenvironment; N-linked glycosylation.
© 2024. Japanese Society of Hematology.