Powered Knee and Ankle Prosthesis Control for Adaptive Ambulation at Variable Speeds, Inclines, and Uneven Terrains

Rep U S. 2023 Oct:2023:2128-2133. doi: 10.1109/iros55552.2023.10342504. Epub 2023 Dec 13.

Abstract

Ambulation in everyday life requires walking at variable speeds, variable inclines, and variable terrains. Powered prostheses aim to provide this adaptability through control of the actuated joints. Some powered prosthesis controllers can adapt to discrete changes in speed and incline but require manual tuning to determine the control parameters, leading to poor clinical viability. Other data-driven controllers can continuously adapt to changes in speed and incline but do so by imposing the same non-amputee gait patterns for all amputee subjects, which does not consider subjective preferences and differing clinical needs of users. Here, we present a controller for powered knee and ankle prostheses that can continuously adapt to different walking speeds, inclines, and uneven terrains without enforcing a specific prosthesis position, impedance, or torque. A virtual biarticular muscle connection determines the knee flexion torque, which changes with both speed and slope. Adaptation to inclines and uneven terrains is based solely on the global shank orientation. Continuously variable damping allows for speed adaptation. Minimum-jerk programming defines the prosthesis swing trajectory at variable cadences. Experiments with one individual with an above-knee amputation suggest that the proposed controller can effectively adapt to different walking speeds, inclines, and rough terrains.