Background: Light at night (LAN) have attracted increased research attention on account of its widespread health hazards. However, the underlying mechanism remains unknown. The objective of this study was to investigate the effects of real-ambient bedroom LAN exposure on circadian rhythm among young adults and potential sex differences.
Methods: Bedroom LAN exposure was measured at 60-s intervals for 2 consecutive days using a portable illuminance meter. Circadian phase was determined by the dim light melatonin onset (DLMO) time in 7 time-series saliva samples.
Results: The mean age of the 142 participants was 20.7 ± 0.8 years, and 59.9% were women. The average DLMO time was 21:00 ± 1:11 h, with men (21:19 ± 1:12 h) later than women (20:48 ± 1:07 h). Higher level of LAN intensity (LANavg ≥ 3lx vs. LANavg < 3lx) was associated with an 81.0-min later in DLMO time (95% CI: 0.99, 1.72), and longer duration of nighttime light intensity ≥ 5lx (LAN5; LAN5 ≥ 45 min vs. LAN5 < 45 min) was associated with a 51.6-min later in DLMO time (95% CI: 0.46, 1.26). In addition, the delayed effect of LAN exposure on circadian phase was more pronounced in men than in women (all P-values <0.05).
Conclusions: Overall, bedroom LAN exposure was significantly associated with delayed circadian rhythm. Additionally, the delayed effect is more significant in men. Keeping bedroom dark at night may be a practicable option to prevent circadian disruption and associated health implications. Future studies with more advanced light measurement instrument and consensus methodology for DLMO assessment are warranted.
Keywords: Circadian phase; Circadian rhythm; Dim light melatonin onset; Light at night.
Copyright © 2024 Elsevier Inc. All rights reserved.