Objective: Early detection and treatment of cervical precancers can prevent disease progression. However, in low-resource communities with a high incidence of cervical cancer, high equipment costs and a shortage of specialists hinder preventative strategies. This manuscript presents a low-cost multiscale in vivo optical imaging system coupled with a computer-aided diagnostic system that could enable accurate, real-time diagnosis of high-grade cervical precancers.
Methods: The system combines portable colposcopy and high-resolution endomicroscopy (HRME) to acquire spatially registered widefield and microscopy videos. A multiscale imaging fusion network (MSFN) was developed to identify cervical intraepithelial neoplasia grade 2 or more severe (CIN 2+). The MSFN automatically identifies and segments the ectocervix and lesions from colposcopy images, extracts nuclear morphology features from HRME videos, and integrates the colposcopy and HRME information.
Results: With a threshold value set to achieve sensitivity equal to clinical impression (0.98 [p = 1.0]), the MSFN achieved a significantly higher specificity than clinical impression (0.75 vs. 0.43, p = 0.000006).
Conclusion: Our findings show that multiscale optical imaging of the cervix allows the highly sensitive and specific detection of high-grade precancers.
Significance: The multiscale imaging system and MSFN could facilitate the accurate, real-time diagnosis of cervical precancers in low-resource settings.