The recurring emergence of novel respiratory viruses has highlighted our poor understanding of the human immune mechanisms governing the resolution of lung infection in an immunologically naïve context. Using SARS-CoV-2 as a prototypical emerging respiratory virus, we leveraged mice co-engrafted with a genetically matched fetal lung xenograft (fLX) and a human immune system (BLT-L mice) to investigate such mechanisms. While BLT-L mice effectively resolve SARS-CoV-2 infection following acute viral replication in fLX, viral clearance is robustly abrogated through systemic depletion of CD4+, but not CD3+ or CD8+ cells, resulting in persistent infection. Leveraging single-cell transcriptomics to uncover the CD4-expressing subsets driving infection resolution, we identified a novel subset of lung extravascular inflammatory monocytes (ExiMO) with antiviral functions. ExiMO are the dominant CD163-expressing myeloid population emerging in fLX upon acute infection and derive from recruited circulating CD4+ monocytes. They are highly enriched in viral RNA and elicit a robust antiviral response before vanishing from tissues when infection resolves. Notably, systemic CD4+ cell depletion results in impaired recruitment of CD163+ cells into fLX and leads to a state of immune tolerance and chronic infection defined by the absence of ExiMO antiviral responses. Together, our study uncovers ExiMO as major sentinels driving SARS-CoV-2 infection resolution in human lung tissues without pre-existing immunity. This work expands our understanding of lung extravascular monocytes and unravels novel facets of the cellular determinants governing our vulnerability to viral respiratory pathogens.