Highly flexible copper tape decorated with Ag nanoarrays as ultrasensitive SERS platforms for multi-hazardous pollutant sensing

Mikrochim Acta. 2024 Mar 12;191(4):193. doi: 10.1007/s00604-024-06276-6.

Abstract

A highly flexible and cost-effective copper tape decorated with silver nanoparticles (Cu-TAg) has been developed for surface-enhanced Raman spectroscopy (SERS) sensing of multi-hazardous environmental pollutants. Highly ordered and spherical-shaped silver nanoarrays have been fabricated using a low-cost thermal evaporation method. The structural, morphological, and optical properties of Cu-TAg sensors have been studied and correlated to the corresponding SERS performances. The size of nanoparticles has been successively tuned by varying the deposition time from 5 to 25 s. The nanoparticle sizes were enhanced with an increase in the evaporation time. SERS investigations have revealed that the sensing potential is subsequently improved with an increase in deposition time up to 10 s and then deteriorates with further increase in Ag deposition. The highest SERS activity was acquired for an optimum size of ~ 37 nm; further simulation studies confirmed this observation. Moreover, Cu-TAg sensors exhibited high sensitivity, reproducibility, and recycling characteristics to be used as excellent chemo-sensors. The lower detection limit estimation revealed that it can sense even in the pico-molar range for sensing of rhodamine 6G and methylene blue. The estimated enhancement factor of the sensor is found to be 9.4 × 107. Molecular-specific sensing of a wide range of pollutants such as rhodamine 6G, alizarin red, methylene blue, butylated hydroxy anisole, and penicillin-streptomycin is demonstrated with high efficiencies for micromolar spiked samples. Copper tape functionalized with Ag arrays thus demonstrated to be a promising candidate for low-cost and reusable chemo-sensors for environmental remediation applications.

Keywords: Antibiotics; Environmental remediation; Food additives; Organic dyes; Thermal evaporation.