Engineering of single atomic Fe-N4 sites on hollow carbon cages to achieve highly reversible MoS2 anodes for Li-ion batteries

J Colloid Interface Sci. 2024 Jun 15:664:45-52. doi: 10.1016/j.jcis.2024.03.023. Epub 2024 Mar 6.

Abstract

Although the single atom electrocatalysts have been demonstrated as efficient catalysts for promoting Li2S/Na2S formation and decomposition in Li-S/Na-S batteries, the functional morphological and structural engineering capable of exposing more active sites is regarded as an essential factor to further enhance the catalytic activity. Here, we have synthesized a single atomically dispersed Fe sites embedded within hollow nitrogen doped carbon cages (Fe-N-HCN) using Fe3O4 spheres as an oxidant and sacrificial template, which is used as a high-efficiency catalyst for boosting the reversible capacity of MoS2 anode in lithium-ion batteries (LIBs). As expected, the electrochemical reaction of MoS2/Fe-N-HCN anode exhibits higher reversibility than pure MoS2 electrodes. Moreover, density functional theory is also employed to reveal that Fe-N-HCN can be effectively adsorbed and catalyze the rapid decomposition of Li2S. The hollow carbon cage structure can facilitate the exposure of the active Fe-N4 sites and favor the mass transfer during the electrochemical reactions, thus the synergistic effect of the Fe-N4 site and the hollow carbon cage structure together improve the catalytic activity for the conversion reaction of MoS2 anode.

Keywords: Anode; Lithium-ion battery; MoS(2); Reversible conversion; Single-atom catalysts.