Monoaminooxidases (MAOs) are important targets for drugs used in the treatment of neurological and psychiatric disorders and particularly on Parkinson's Disease (PD). Compounds containing a trans-stilbenoid skeleton have demonstrated good selective and reversible MAO-B inhibition. Here, twenty-two (Z)-3-benzylidenephthalides (benzalphthalides, BPHs) displaying a trans-stilbenoid skeleton have been synthesised and evaluated as inhibitors of the MAO-A and MAO-B isoforms. Some BPHs have selectively inhibited MAO-B, with IC50 values ranging from sub-nM to μM. The most potent compound with IC50 = 0.6 nM was the 3',4'-dichloro-BPH 16, which showed highly selective and reversible MAO-B inhibitory activity. Furthermore, the most selective BPHs displayed a significant protection against the apoptosis, and mitochondrial toxic effects induced by 6-hydroxydopamine (6OHDA) on SH-SY5Y cells, used as a cellular model of PD. The results of virtual binding studies on the most potent compounds docked in MAO-B and MAO-A were in agreement with the potencies and selectivity indexes found experimentally. Additionally, related to toxicity risks, drug-likeness and ADME properties, the predictions found for the most relevant BPHs in this research were within those ranges established for drug candidates.
Keywords: Benzalphthalides; Cellular protection; Docking; Monoaminoxidase inhibitors; Reversibility; Selectivity.
Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.