Identification of a potent palladium-aryldiphosphine catalytic system for high-performance carbonylation of alkenes

Nat Commun. 2024 Mar 5;15(1):2016. doi: 10.1038/s41467-024-46286-9.

Abstract

The development of stable and efficient ligands is of vital significance to enhance the catalytic performance of carbonylation reactions of alkenes. Herein, an aryldiphosphine ligand (L11) bearing the [Ph2P(ortho-C6H4)]2CH2 skeleton is reported for palladium-catalyzed regioselective carbonylation of alkenes. Compared with the industrially successful Pd/1,2-bis(di-tert-butylphosphinomethyl)benzene catalyst, catalytic efficiency catalyzed by Pd/L11 on methoxycarbonylation of ethylene is obtained, exhibiting better catalytic performance (TON: >2,390,000; TOF: 100,000 h-1; selectivity: >99%) and stronger oxygen-resistance stability. Moreover, a substrate compatibility (122 examples) including chiral and bioactive alkenes or alcohols is achieved with up to 99% yield and 99% regioselectivity. Experimental and computational investigations show that the appropriate bite angle of aryldiphosphine ligand and the favorable interaction of 1,4-dioxane with Pd/L11 synergistically contribute to high activity and selectivity while the electron deficient phosphines originated from electron delocalization endow L11 with excellent oxygen-resistance stability.