Long-read sequencing unveils novel somatic variants and methylation patterns in the genetic information system of early lung cancer

Comput Biol Med. 2024 Mar:171:108174. doi: 10.1016/j.compbiomed.2024.108174. Epub 2024 Feb 21.

Abstract

Lung cancer poses a global health challenge, necessitating advanced diagnostics for improved outcomes. Intensive efforts are ongoing to pinpoint early detection biomarkers, such as genomic variations and DNA methylation, to elevate diagnostic precision. We conducted long-read sequencing on cancerous and adjacent non-cancerous tissues from a patient with lung adenocarcinoma. We identified somatic structural variations (SVs) specific to lung cancer by integrating data from various SV calling methods and differentially methylated regions (DMRs) that were distinct between these two tissue samples, revealing a unique methylation pattern associated with lung cancer. This study discovered over 40,000 somatic SVs and over 180,000 DMRs linked to lung cancer. We identified approximately 700 genes of significant relevance through comprehensive analysis, including genes intricately associated with many lung cancers, such as NOTCH1, SMOC2, CSMD2, and others. Furthermore, we observed that somatic SVs and DMRs were substantially enriched in several pathways, such as axon guidance signaling pathways, which suggests a comprehensive multi-omics impact on lung cancer progression across various biological investigation levels. These datasets can potentially serve as biomarkers for early lung cancer detection and may hold significant value in clinical diagnosis and treatment applications.

Keywords: Biomarkers; Differentially methylated regions; Long-read sequencing; Lung cancer; Structural variations.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenocarcinoma of Lung* / genetics
  • Biomarkers
  • DNA Methylation / genetics
  • Humans
  • Lung Neoplasms* / diagnosis
  • Lung Neoplasms* / genetics
  • Oligonucleotide Array Sequence Analysis

Substances

  • Biomarkers