Metagenomic analysis of the intestinal microbiome reveals the potential mechanism involved in Bacillus amyloliquefaciens in treating schistosomiasis japonica in mice

Microbiol Spectr. 2024 Apr 2;12(4):e0373523. doi: 10.1128/spectrum.03735-23. Epub 2024 Mar 5.

Abstract

Schistosomiasis japonica is one of the neglected tropical diseases characterized by chronic hepatic, intestinal granulomatous inflammation and fibrosis, as well as dysbiosis of intestinal microbiome. Previously, the probiotic Bacillus amyloliquefaciens has been shown to alleviate the pathological injuries in mice infected with Schistosoma japonicum by improving the disturbance of the intestinal microbiota. However, the underlying mechanisms involved in this process remain unclear. In this study, metagenomics sequencing and functional analysis were employed to investigate the differential changes in taxonomic composition and functional genes of the intestinal microbiome in S. japonicum-infected mice treated with B. amyloliquefaciens. The results revealed that intervention with B. amyloliquefaciens altered the taxonomic composition of the intestinal microbiota at the species level in infected mice and significantly increased the abundance of beneficial bacteria. Moreover, the abundance of predicted genes in the intestinal microbiome was also significantly changed, and the abundance of xfp/xpk and genes translated to urease was significantly restored. Further analysis showed that Limosilactobacillus reuteri was positively correlated with several KEGG Orthology (KO) genes and metabolic reactions, which might play important roles in alleviating the pathological symptoms caused by S. japonicum infection, indicating that it has the potential to function as another effective therapeutic agent for schistosomiasis. These data suggested that treatment of murine schistosomiasis japonica by B. amyloliquefaciens might be induced by alterations in the taxonomic composition and functional gene of the intestinal microbiome in mice. We hope this study will provide adjuvant strategies and methods for the early prevention and treatment of schistosomiasis japonica.

Importance: Targeted interventions of probiotics on gut microbiome were used to explore the mechanism of alleviating schistosomiasis japonica. Through metagenomic analysis, there were significant changes in the composition of gut microbiota in mice infected with Schistosoma japonicum and significant increase in the abundance of beneficial bacteria after the intervention of Bacillus amyloliquefaciens. At the same time, the abundance of functional genes was found to change significantly. The abundance of genes related to urease metabolism and xfp/xpk related to D-erythrose 4-phosphate production was significantly restored, highlighting the importance of Limosilactobacillus reuteri in the recovery and abundance of predicted genes of the gut microbiome. These results indicated potential regulatory mechanism between the gene function of gut microbiome and host immune response. Our research lays the foundation for elucidating the regulatory mechanism of probiotic intervention in alleviating schistosomiasis japonica, and provides potential adjuvant treatment strategies for early prevention and treatment of schistosomiasis japonica.

Keywords: Bacillus amyloliquefaciens; Schistosoma japonicum; functional genes; intestinal microbiome.

MeSH terms

  • Animals
  • Bacillus amyloliquefaciens*
  • Bacteria / genetics
  • Gastrointestinal Microbiome*
  • Mice
  • Schistosoma japonicum* / genetics
  • Schistosomiasis japonica* / drug therapy
  • Urease

Substances

  • Urease