Cavity-modified molecular dipole switching dynamics

J Chem Phys. 2024 Mar 7;160(9):094111. doi: 10.1063/5.0188471.

Abstract

Polaritonic states, which are formed by resonances between a molecular excitation and the photonic mode of a cavity, have a number of useful properties that offer new routes to control molecular photochemistry using electric fields. To provide a theoretical description of how polaritonic states affect the real-time electron dynamics in molecules, a new method is described where the effects of strong light-molecule coupling are implemented using real-time electronic structure theory. The coupling between the molecular electronic states and the cavity is described by the Pauli-Fierz Hamiltonian, and transitions between polaritonic states are induced via an external time-dependent electric field using time-dependent configuration interaction (TDCI) theory, producing quantum electrodynamics TDCI (QED-TDCI). This method is used to study laser-induced ultrafast charge transfer and dipole-switching dynamics of the LiCN molecule inside a cavity. The increase in cavity coupling strength is found to have a significant impact on the energies and transition dipole moments of the molecule-cavity system. The convergence of the polaritonic state energies as a function of the number of included electronic and photonic basis states is discussed.