Stress Distribution on Maxillary Canines Following Restoration With Different Dimensions of Metal and Fiber Posts: A Finite Element Study

Cureus. 2024 Jan 30;16(1):e53266. doi: 10.7759/cureus.53266. eCollection 2024 Jan.

Abstract

Introduction In recent times, finite element analysis (FEA) in the field of dentistry has been employed to assess the mechanical properties of biological materials and tissues, which are difficult to quantify directly within a living organism. Only a limited number of studies have examined the impact of post diameter and length on how stress is dispersed in a maxillary canine tooth. Hence, this in vitro investigation was conducted to analyze the distribution of stress in a maxillary canine tooth that was replaced using metal and fiber posts with different diameters (1.5 mm and 1.8 mm) and lengths (11 mm and 15 mm), applying FEA. Materials and methods A FEA study was performed and all models were grouped as follows: Models 1 and 5 were made of titanium (Ti) and glass fiber posts, respectively, with a diameter of 1.5 mm and a length of 15 mm with composite core and all-ceramic crown; Models 2 and 6 were made of Ti and glass fiber posts, respectively, with a diameter of 1.5 mm and a length of 11 mm with composite core and all-ceramic crown; Models 3 and 7 were made of Ti and glass fiber posts, respectively, with a diameter of 1.8 mm and a length of 15 mm with composite core and all-ceramic crown; and Models 4 and 8 were made of Ti and glass fiber posts, respectively, with a diameter of 1.8 mm and a length of 11 mm with composite core and all-ceramic crown. A force of 200 N was exerted on the ceramic crown at an angulation of 45° to the longitudinal axis of the tooth on the palatal surface above the cingulum. The failure was determined by the correlation between a larger von Mises stress estimate and an increased likelihood of failure. The resulting stresses were then contrasted with the highest possible tensile strength of the material. Results The study demonstrated that fiber posts with a diameter of 1.8 mm and an average length of 11 mm exhibited reduced stress levels in comparison to Ti posts. The largest stresses were seen at the cervical region of the tooth, regardless of the materials employed. There was no discernible alteration in stress when the length and diameter of the post were modified. The highest stress in the composite core was measured in Ti posts measuring 1.5 mm in diameter and 15 mm in length. The highest level of stress on dentin was noted in cases where a fiber post was used, as opposed to cases where a Ti post was used. The measured stress within the fiber post was insignificant. However, the pressures imparted to the dentin were greater and more uniformly distributed in comparison to the Ti post cases. Conclusion It is suggested that a composite resin core be used along with a fiber post that is larger in diameter and smaller in length, within clinical bounds, in order to lessen stress in the radicular tooth, despite the substantial coronal defect. Further clinical trials are required to assess the survival rate of these specific measurements, dimensions, and biomaterials.

Keywords: composite core; finite-element analysis; glass fiber post; stress distribution; titanium post.