Research has shown multiscale entropy, brain signal behavior across time scales, to reliably increase at lower time scales with time-on-task fatigue. However, multiscale entropy has not been examined in short vigilance tasks (i.e., ≤ 10 min). Addressing this gap, we examine multiscale entropy during a 10-minute Psychomotor Vigilance Test (PVT). Thirty-four participants provided neural data while completing the PVT. We compared the first 2 min of the task to the 7th and 8th minutes to avoid end-spurt effects. Results suggested increased multiscale entropy at lower time scales later compared to earlier in the task, suggesting multiscale entropy is a strong marker of time-on-task fatigue onset during short vigils. Separate analyses for Fast and Slow performers reveal differential entropy patterns, particularly over visual cortices. Here, observed brain-behavior linkage between entropy and reaction time for slow performers suggests that entropy assays over sensory cortices might have predictive value for fatigue onset or shifts from on- to off-task states.
Keywords: Multiscale entropy; Psychomotor vigilance test; Sustained attention; Task fatigue; Vigilance decrement.
Copyright © 2024 Elsevier B.V. All rights reserved.