A B3LYP-D3 computational study of electronic, structural and torsional dynamic properties of mono-substituted naphthalenes: the effect of the nature and position of substituent

J Mol Model. 2024 Feb 29;30(3):88. doi: 10.1007/s00894-024-05884-6.

Abstract

Context: The effects of selected substituent groups (-CH3, -Br, -CO2CH3, -COOH, and -NH2) and their relative positions on the electronic and structural properties of mono-substituted naphthalenes were investigated theoretically. In order to elucidate the suitability of the studied substituents in different fields including chemistry, spectroscopy, and materials sciences, accurate DFT calculations were performed at the dispersion-corrected B3LYP level of theory (B3LYP-D3/6-311 + + G(d,p)), and the obtained results were then validated by extensive comparisons with available experimental data. Among the studied substituents, the -NH2 group causes the maximum reduction of the HOMO-LUMO energy gap. This result revealed clearly the suitability of the -NH2 group, compared to other studied substituents, in the chemical synthesis of future organic-semiconductors having small energy gaps. In addition, the level of theory adopted in this study allowed the fine discrimination between the chemical reactivity parameters of the studied congeners, which is very difficult to perform experimentally. On the other hand, the rotational barriers of the studied non-halogen substituent groups were predicted. The greater sensitivity of the rotational barrier heights to the local environments, arising from intra-molecular interactions, was attributed to the -CH3 group. The torsional frequencies, calculated within the harmonic approximation, were also employed to relatively explore the differences between the environments of the same substituent at two different positions. The usefulness of these results can be manifested in the vibrational spectroscopy field, especially, for the IR/ Raman spectral analysis of polycyclic-aromatic congeners.

Method: All calculations were conducted within the Density functional theory (DFT) using the so-called dispersion-corrected B3LYP functional (B3LYP-D3) with the carefully selected 6-311 + + G(d,p) basis set. The B3LYP-D3/6-311 + + G(d,p) calculations were performed using the Gaussian 09 program, and the obtained results were visualized by employing the GaussView 6.0.16 program.

Keywords: DFT calculations; Electronic properties; Naphthalene derivatives; Rotational barriers; Substituent effect.