A multi-institutional phase I study of acetazolamide with temozolomide in adults with newly diagnosed MGMT-methylated malignant glioma

Neurooncol Adv. 2024 Feb 1;6(1):vdae014. doi: 10.1093/noajnl/vdae014. eCollection 2024 Jan-Dec.

Abstract

Background: A significant unmet need exists for the treatment of glioblastoma, IDH-wildtype (GBM). Preclinical work shows that acetazolamide sensitizes GBM to temozolomide (TMZ) by overcoming TMZ resistance due to BCL-3-dependent upregulation of carbonic anhydrase. Acetazolamide is Food and Drug Administration-approved for the treatment of altitude sickness. Drug repurposing enables the application of drugs to diseases beyond initial indications. This multi-institutional, open-label, phase I trial examined a combination of acetazolamide and TMZ in patients with MGMT promoter-methylated high-grade glioma.

Methods: A total of 24 patients (GBM, IDH-wildtype = 22; Grade 4 astrocytoma, IDH-mutant = 1; Grade 3 astrocytoma, IDH-mutant = 1) were accrued over 17 months. All patients received oral acetazolamide (250 mg BID for 7 days increased to 500 mg BID for Days 8-21 of each 28-day cycle) during the adjuvant phase of TMZ for up to 6 cycles.

Results: No patient had a dose-limiting toxicity. Adverse events were consistent with known sequelae of acetazolamide and TMZ. In the 23 WHO Grade 4 patients, the median overall survival (OS) was 30.1 months and the median progression-free survival was 16.0 months. The 2-year OS was 60.9%. In total 37% of the study population had high BCL-3 staining and trended toward shorter OS (17.2 months vs N.R., P = .06).

Conclusions: The addition of acetazolamide is safe and tolerable in GBM patients receiving standard TMZ. Survival results compare favorably to historical data from randomized trials in patients with MGMT promoter-methylated GBM and support examination of acetazolamide in a randomized trial. BCL-3 expression is a potential biomarker for prognosis in GBM or for patients more likely to benefit from TMZ.

Keywords: acetazolamide; clinical trial; drug repurposing; glioblastoma; temozolomide.