Background & aims: Hepatocellular carcinoma (HCC) is characterized by an immune-suppressive microenvironment, which contributes to tumor progression, metastasis, and immunotherapy resistance. Identification of HCC-intrinsic factors regulating the immunosuppressive microenvironment is urgently needed. Here, we aimed to elucidate the role of SYR-Related High-Mobility Group Box 18 (SOX18) in inducing immunosuppression and to validate novel combination strategies for SOX18-mediated HCC progression and metastasis.
Methods: The role of SOX18 in HCC was investigated in orthotopic allografts and diethylinitrosamine/carbon tetrachloride-induced spontaneous models by using murine cell lines, adeno-associated virus 8, and hepatocyte-specific knockin and knockout mice. The immune cellular composition in the HCC microenvironment was evaluated by flow cytometry and immunofluorescence.
Results: SOX18 overexpression promoted the infiltration of tumor-associated macrophages (TAMs) and regulatory T cells (Tregs) while diminishing cytotoxic T cells to facilitate HCC progression and metastasis in cell-derived allografts and chemically induced HCC models. Mechanistically, transforming growth factor-beta 1 (TGF-β1) upregulated SOX18 expression by activating the Smad2/3 complex. SOX18 transactivated chemokine (C-X-C motif) ligand 12 (CXCL12) and programmed death ligand 1 (PD-L1) to induce the immunosuppressive microenvironment. CXCL12 knockdown significantly attenuated SOX18-induced TAMs and Tregs accumulation and HCC dissemination. Antagonism of chemokine receptor 4 (CXCR4), the cognate receptor of CXCL12, or selective knockout of CXCR4 in TAMs or Tregs likewise abolished SOX18-mediated effects. TGFβR1 inhibitor Vactosertib or CXCR4 inhibitor AMD3100 in combination with anti-PD-L1 dramatically inhibited SOX18-mediated HCC progression and metastasis.
Conclusions: SOX18 promoted the accumulation of immunosuppressive TAMs and Tregs in the microenvironment by transactivating CXCL12 and PD-L1. CXCR4 inhibitor or TGFβR1 inhibitor in synergy with anti-PD-L1 represented a promising combination strategy to suppress HCC progression and metastasis.
Keywords: AMD3100; Anti-PD-L1; Combinational Immunotherapy; Regulatory T Cell; Tumor-Associated Macrophage.
Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.