Therapeutic Effects of AF219 on Interstitial Cystitis/Bladder Pain Syndrome Induced by Cyclophosphamide or Water Avoidance Stress in Rats

Int Urogynecol J. 2024 Mar;35(3):677-688. doi: 10.1007/s00192-023-05723-x. Epub 2024 Feb 20.

Abstract

Introduction and hypothesis: To evaluate the effect of AF219, a P2X3 receptor antagonist, in animal models of interstitial cystitis/bladder pain syndrome (IC/BPS) induced by cyclophosphamide (CYP) or water avoidance stress (WAS).

Methods: Thirty-two adult female Wistar albino rats were used in each IC/BPS model. Assessment of nociception and anxiety and severity of inflammation in the bladder were assessed by behavioral experiments and histopathological examinations respectively. The contraction responses of the bladder were evaluated in vitro and protein levels of P2X3, P2X7, Trk-A, TRPV1, and TRPA1 were analyzed by Western blot.

Results: The IC/BPS groups had shorter response times to noxious stimuli, exhibited more anxiety-like behavior, had higher inflammation-based histological scores, and showed greater increased contraction responses to carbachol, adenosine triphosphate, and electrical field stimulation in in vitro bladder strips than controls for both models (p < 0.05). The improvements in behavioral and bladder contraction responses and inflammation scores in the IC/BPS + AF219 groups were similar to control findings (p > 0.05). Exposure to WAS or CYP increased P2X3 expression in the bladder compared with the controls (p < 0.05). Apart from TRPA1, the levels of P2X7, Trk-A, and TRPV1 were also higher in the IC/BPS groups than in the controls (p < 0.05). No significant differences were observed between IC/BPS + AF219 and controls regarding P2X3, P2X7, Trk-A, and TRPV1 in the WAS model (p > 0.05). Moreover, P2X3 and P2X7 levels were significantly lower in IC/BPS + AF219 than in the AF219-untreated WAS model (p < 0.05).

Conclusions: These findings suggest that P2X3 receptors play a significant role in bladder functional responses, nociception, and also the pathogenesis of IC/BPS. AF219 may be a promising therapeutic strategy for IC/BPS. Comparing AF219 with current IC/BPS treatment agents in future studies may yield valuable insights into its efficacy.

Keywords: AF219; Bladder pain syndrome; Interstitial cystitis; P2X3; Therapeutic efficacy.

MeSH terms

  • Animals
  • Cyclophosphamide / therapeutic use
  • Cystitis, Interstitial*
  • Female
  • Inflammation
  • Rats
  • Rats, Wistar
  • Water

Substances

  • Cyclophosphamide
  • Water