Basic-helix-loop-helix family member e41 suppresses osteoclastogenesis and abnormal bone resorption disease via NFATc1

iScience. 2024 Feb 1;27(3):109059. doi: 10.1016/j.isci.2024.109059. eCollection 2024 Mar 15.

Abstract

Overactivation of osteoclasts due to altered osteoclastogenesis causes multiple bone metabolic diseases. However, how osteoclast differentiation is tightly regulated and involved in multiple pathophysiological states remains mystery. In this study, we noticed that the downregulation of BHLHE41 (basic-helix-loop-helix family member e41) was tightly associated with osteoclast differentiation and osteoporosis. Functionally, the upregulation or downregulation of BHLHE41 suppressed or promoted osteoclast differentiation, respectively, in vitro. A mechanism study indicated that the direct binding of BHLHE41 to the promoter region of NFATc1 that led to its downregulation. Notably, the inhibition of NFATc1 abrogated the enhanced osteoclast differentiation in BHLHE41-knockdown bone marrow macrophages (BMMs). Additionally, upregulation of BHLHE41 impeded bone destruction in OVX mice with osteoporosis. Therefore, our research reveals the mechanism by which BHLHE41 regulates osteoclast differentiation and bone resorption via NFATc1, and targeting BHLHE41 is a potential strategy for the treatment of osteoporosis.

Keywords: Cell biology; Molecular biology.