Evolution of a Combined UV/Vis and NMR Setup with Fixed Pathlengths for Mass-limited Samples

Chemistry. 2024 Apr 22;30(23):e202304016. doi: 10.1002/chem.202304016. Epub 2024 Mar 13.

Abstract

The investigation of reaction mechanisms is a complex task that usually requires the use of several techniques. To obtain as much information as possible on the reaction and any intermediates - possibly invisible to one technique - the combination of techniques is a solution. In this work we present a new setup for combined UV/Vis and NMR spectroscopy and compare it to an established alternative. The presented approach allows a versatile usage of different commercially-available components like mirrors and fiber bundles as well as different fixed pathlengths according to double transmission or single transmission measurements. While a previous approach is based on a dip-probe setup for conventional NMR probes, the new one is based on a micro-Helmholtz coil array (LiquidVoxel™). This makes the use of rectangular cuvettes possible, which ensure well-defined pathlengths allowing for quantification of species. Additionally, very low quantities of compound can be analyzed due to the microfabrication and small cuvette size used. As proof-of-principle this new setup for combined UV/Vis and NMR spectroscopy is used to examine a well-studied photochromic system of the dithienylethene compound class. A thorough comparison of the pros and cons of the two setups for combined UV/Vis and NMR measurements is performed.

Keywords: Combined Techniques; NMR spectroscopy; Photochromism; Reaction Monitoring; UV/Vis spectroscopy.