Engineered Saccharomyces cerevisiae harbors xylose isomerase and xylose transporter improves co-fermentation of xylose and glucose for ethanol production

Prep Biochem Biotechnol. 2024 Sep;54(8):1058-1067. doi: 10.1080/10826068.2024.2315479. Epub 2024 Feb 13.

Abstract

Saccharomyces cerevisiae cannot assimilate xylose, second to glucose derived from lignocellulosic biomass. Here, the engineered S. cerevisiae strains INVSc-XI and INVSc-XI/XT were constructed using xylA and Xltr1p to co-utilize xylose and glucose, achieving economic viability and sustainable production of fuels. The xylose utilization rate of INVSc-XI/XT was 2.3-fold higher than that of INVSc-XI, indicating that overexpressing Xltr1p could further enhance xylose utilization. In mixed sugar media, a small amount of glucose enhanced the consumption of xylose by INVSc-XI/XT. Transcriptome analysis showed that glucose increased the upregulation of acetate of coenzyme A synthetase (ACS), alcohol dehydrogenase (ADH), and transketolase (TKL) gene expression in INVSc-XI/XT, further promoting xylose utilization and ethanol yield. The highest ethanol titer of 2.91 g/L with a yield of 0.29 g/g at 96 h by INVSc-XI/XT was 56.9% and 63.0% of the theoretical ethanol yield from glucose and xylose, respectively. These results showed overexpression of xylA and Xltr1p is a promising strategy for improving xylose and glucose conversion to ethanol. Although the ability of strain INVSc-XI/XT to produce ethanol was not very satisfactory, glucose was discovered to influence xylose utilization in strain INVSc-XI/XT. Altering the glucose concentration is a promising strategy to improve the xylose and glucose co-utilization.

Keywords: Saccharomyces cerevisiae; transcriptome analysis; xylose and glucose fermentation; xylose isomerase; xylose transporter.

Plain language summary

INVSc-XI and INVSc-XI/XT strains were newly constructed to utilize xylose and glucose.XylA, in combination with xylose transporter Xltr1p, enhances xylose consumption.A small amount of glucose enhanced xylose utilization in INVSc-XI/XT strain.The expression of ACS, ADH, and TKL genes is upregulated in the media containing mixed sugars.The highest ethanol yield of 0.29 g/g was produced in a 2-L scale-up fermenter.

MeSH terms

  • Aldose-Ketose Isomerases* / genetics
  • Aldose-Ketose Isomerases* / metabolism
  • Ethanol* / metabolism
  • Fermentation*
  • Glucose* / metabolism
  • Metabolic Engineering* / methods
  • Monosaccharide Transport Proteins / genetics
  • Monosaccharide Transport Proteins / metabolism
  • Saccharomyces cerevisiae Proteins / genetics
  • Saccharomyces cerevisiae Proteins / metabolism
  • Saccharomyces cerevisiae* / genetics
  • Saccharomyces cerevisiae* / metabolism
  • Xylose* / metabolism

Substances

  • Xylose
  • Ethanol
  • Glucose
  • xylose isomerase
  • Aldose-Ketose Isomerases
  • Saccharomyces cerevisiae Proteins
  • Monosaccharide Transport Proteins