Adenosine A2A receptors (A2AAR) evoke pleiotropic intracellular signaling events via activation of the stimulatory heterotrimeric G protein, Gs. Here, we used cryoEM to solve the agonist-bound structure of A2AAR in a complex with full-length Gs α and Gβ4γ2 (A2AAR-Gs α:β4γ2). The orthosteric binding site of A2AAR-Gs α:β4γ2 was similar to other structures of agonist-bound A2AAR, with or without Gs. Unexpectedly, the solvent accessible surface area within the interior of the complex was substantially larger for the complex with Gβ4 versus the closest analog, A2AAR-miniGs α:β1γ2. Consequently, there are fewer interactions between the switch II in Gs α and the Gβ4 torus. In reconstitution experiments Gβ4γ2 displayed a ten-fold higher efficiency over Gβ1γ2 in catalyzing A2AAR dependent GTPγS binding to Gs α. We propose that the less constrained switch II in A2AAR-Gs α:β4γ2 accounts for this increased efficiency. These results suggest that Gβ4 functions as a positive allosteric enhancer versus Gβ1.