To limit the spread of bovine ringworm, control measures such as movement restrictions are highly recommended. In this context, calves at auction markets in Styria, Austria, displaying skin lesions characteristic for bovine ringworm, are excluded from the auctions. To investigate whether these clinical assessments correspond to laboratory diagnosis, a total of 166 samples taken from skin lesions assigned to the three clinical categories 'ringworm very likely (v), likely (l) or unlikely (u)' were mycologically examined using microscopy, culture, and nested PCR followed by amplicon sequencing. Further, the relationships of isolated dermatophytes were determined through multi-locus sequence typing (MLST). Overall, a high agreement between clinical assessment and laboratory results were observed with microscopy and nested PCR, providing more consistent results and molecular detection possessing an analytical sensitivity superior to that of cultural isolation (culture 21.7% vs. nested PCR 48.2%). Phylogenetic analyses revealed that most of the isolated dermatophytes belong to a unique Trichophyton verrucosum MLST genotype. In conclusion, clinical assessments were largely confirmed through laboratory diagnosis with nested PCR and sequencing, providing rapid, sensitive, and species-specific detection of dermatophytes in calves at auction markets displaying skin lesions typical for ringworm; this seems to be predominantly caused by a single Trichophyton verrucosum strain.
Keywords: MLST; Trichophyton verrucosum; calves; clinical assessment; laboratory diagnosis; nested PCR; ringworm.