Here, we describe a novel pan-RAS inhibitor, ADT-007, that potently inhibited the growth of RAS mutant cancer cells irrespective of the RAS mutation or isozyme. RAS WT cancer cells with GTP-activated RAS from upstream mutations were equally sensitive. Conversely, RAS WT cancer cells harboring downstream BRAF mutations and normal cells were essentially insensitive to ADT-007. Sensitivity of cancer cells to ADT-007 required activated RAS and dependence on RAS for proliferation, while insensitivity was attributed to metabolic deactivation by UDP-glucuronosyltransferases expressed in RAS WT and normal cells but repressed in RAS mutant cancer cells. ADT-007 binds nucleotide-free RAS to block GTP activation of effector interactions and MAPK/AKT signaling, resulting in mitotic arrest and apoptosis. ADT-007 displayed unique advantages over mutant-specific KRAS and pan-KRAS inhibitors, as well as other pan-RAS inhibitors that could impact in vivo antitumor efficacy by escaping compensatory mechanisms leading to resistance. Local administration of ADT-007 showed robust antitumor activity in syngeneic immune-competent and xenogeneic immune-deficient mouse models of colorectal and pancreatic cancer. The antitumor activity of ADT-007 was associated with the suppression of MAPK signaling and activation of innate and adaptive immunity in the tumor immune microenvironment. Oral administration of ADT-007 prodrug also inhibited tumor growth, supporting further development of this novel class of pan-RAS inhibitors for RAS-driven cancers.
Significance: ADT-007 has unique pharmacological properties with distinct advantages over other RAS inhibitors by circumventing resistance and activating antitumor immunity. ADT-007 prodrugs and analogs with oral bioavailability warrant further development for RAS-driven cancers.