Activated FGFR2 signalling as a biomarker for selection of intrahepatic cholangiocarcinoma patients candidate to FGFR targeted therapies

Sci Rep. 2024 Feb 7;14(1):3136. doi: 10.1038/s41598-024-52991-8.

Abstract

FGFR inhibitors have been developed to inhibit FGFR activation and signal transduction; notwithstanding, currently the selection of intrahepatic cholangiocarcinoma (iCCA) patients for these drugs only relies on the detection of FGFR2 genetic alterations (GAs) in tumor tissues or circulating tumor DNAs, without concomitant assessment of FGFR2 signalling status. Accordingly, we performed multi-omic analyses of FGFR2 genes and FGFR2 signalling molecules in the tissue samples from 36 iCCA naïve patients. Gain-of-function FGFR2 GAs were detected in 7 patients, including missense mutations (n = 3; p.F276C, p.C382R and p.Y375C), translocations (n = 1) and copy number gain (n = 4; CNV ≥ 4). In contrast, among 29 patients with wild-type FGFR2, 4 cases showed activation of FGFR2 signalling, as they expressed the FGFR2 ligand FGF10 and phosphorylated FGFR2/FRS2α proteins; the remaining 25 cases resulted negative for activated FGFR2 signalling, as they lacked FGFR2 (n = 8) or phosphorylated FRS2α (n = 17) expression. Overall, we found that activation of FGFR2 signalling occurs not only in iCCA naïve patients with FGFR2 GAs, but also in a subgroup carrying wild-type FGFR2. This last finding entails that also this setting of patients could benefit from FGFR targeted therapies, widening indication of these drugs for iCCA patients beyond current approval. Future clinical studies are therefore encouraged to confirm this hypothesis.

MeSH terms

  • Bile Duct Neoplasms* / drug therapy
  • Bile Duct Neoplasms* / genetics
  • Bile Duct Neoplasms* / metabolism
  • Bile Ducts, Intrahepatic / pathology
  • Biomarkers
  • Cholangiocarcinoma* / drug therapy
  • Cholangiocarcinoma* / genetics
  • Cholangiocarcinoma* / metabolism
  • Humans
  • Receptor, Fibroblast Growth Factor, Type 2 / genetics
  • Receptor, Fibroblast Growth Factor, Type 2 / metabolism
  • Signal Transduction

Substances

  • Receptor, Fibroblast Growth Factor, Type 2
  • Biomarkers
  • FGFR2 protein, human