Objectives: Glioblastoma (GBM) is a fatal adult central nervous system tumor. Due to its high heterogeneity, the survival rate and prognosis of patients are poor. Thousands of people die of this disease every year all over the world. At present, the treatment of GBM is mainly through surgical resection and the combination of later drugs, radiotherapy, and chemotherapy. An abnormal redox system is involved in the malignant progression and treatment tolerance of glioma, which is the main reason for poor survival and prognosis. The construction of a GBM redox-related prognostic model may be helpful in improving the redox immunotherapy and prognosis of GBM.
Methods: Based on glioma transcriptome data and clinical data from The Cancer Genome Atlas, databases, a risk model of redox genes was constructed by univariate and multivariate Cox analysis. The good prediction performance of the model was verified by the internal validation set of The Cancer Genome Atlas, and the external data of Chinese Glioma Genome Atlas.
Results: The results confirmed that the higher the risk score, the worse the survival of patients. Age and isocitrate dehydrogenase status were significantly correlated with risk scores. The analysis of immune infiltration and immunotherapy found that there were significant differences in the immune score, matrix score, and ESTIMATE score between high and low-risk groups. reverse transcription polymerase chain reaction and immunohistochemical staining of glioma samples confirmed the expression of the hub gene.
Conclusion: Our study suggests that the 5 oxidative-related genes nitricoxidesynthase3 , NCF2 , VASN , FKBP1B , and TXNDC2 are hub genes, which may provide a reliable prognostic tool for glioma clinical treatment.
Copyright © 2024 Wolters Kluwer Health, Inc. All rights reserved.