MicroRNA-146a gene transfer ameliorates senescence and senescence-associated secretory phenotypes in tendinopathic tenocytes

Aging (Albany NY). 2024 Feb 2;16(3):2702-2714. doi: 10.18632/aging.205505. Epub 2024 Feb 2.

Abstract

Objective: Tendinopathy is influenced by multiple factors, including chronic inflammation and aging. Senescent cells exhibit characteristics such as the secretion of matrix-degrading enzymes and pro-inflammatory cytokines, collectively known as senescence-associated secretory phenotypes (SASPs). Many of these SASP cytokines and enzymes are implicated in the pathogenesis of tendinopathy. MicroRNA-146a (miR-146a) blocks senescence by targeting interleukin-1β (IL-1β) receptor-associated kinase 4 (IRAK-4) and TNF receptor-associated factor 6 (TRAF6), thus inhibiting NF-κB activity. The aims of this study were to (1) investigate miR-146a expression in tendinopathic tendons and (2) evaluate the role of miR-146a in countering senescence and SASPs in tendinopathic tenocytes.

Methods: MiR-146a expression was assessed in human long head biceps (LHB) and rat tendinopathic tendons by in situ hybridization. MiR-146a over-expression in rat primary tendinopathic tenocytes was achieved by lentiviral vector-mediated precursor miR-146a transfer (LVmiR-146a). Expression of various senescence-related markers was analyzed by quantitative reverse transcription polymerase chain reaction (qRT-PCR), immunoblotting and immunofluorescence. MiR-146a expression showed a negative correlation with the severity of tendinopathy in human and rat tendinopathic tendons (p<0.001).

Results: Tendinopathic tenocyte transfectants overexpressing miR-146a exhibited downregulation of various senescence and SASP markers, as well as the target molecules IRAK-4 and TRAF6, and the inflammatory mediator phospho-NF-κB. Additionally, these cells showed enhanced nuclear staining of high mobility group box 1 (HMGB1) compared to LVmiR-scramble-transduced controls in response to IL-1β stimulation.

Conclusions: We demonstrate that miR-146a expression is negatively correlated with the progression of tendinopathy. Moreover, its overexpression protects tendinopathic tenocytes from SASPs and senescence through the IRAK-4/TRAF6/NF-kB pathway.

Keywords: lentiviral vector; microRNA-146a; senescence; senescence-associated secretory phenotypes; tendinopathy.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cytokines / metabolism
  • Humans
  • MicroRNAs* / genetics
  • MicroRNAs* / metabolism
  • NF-kappa B / genetics
  • NF-kappa B / metabolism
  • Rats
  • Senescence-Associated Secretory Phenotype
  • TNF Receptor-Associated Factor 6 / metabolism
  • Tendinopathy* / genetics
  • Tenocytes / metabolism

Substances

  • Cytokines
  • MicroRNAs
  • NF-kappa B
  • TNF Receptor-Associated Factor 6
  • MIRN146a microRNA, rat