High-density electroencephalographic functional networks in genetic generalized epilepsy: Preserved whole-brain topology hides local reorganization

Epilepsia. 2024 Apr;65(4):961-973. doi: 10.1111/epi.17903. Epub 2024 Feb 2.

Abstract

Objective: Genetic generalized epilepsy (GGE) accounts for approximately 20% of adult epilepsy cases and is considered a disorder of large brain networks, involving both hemispheres. Most studies have not shown any difference in functional whole-brain network topology when compared to healthy controls. Our objective was to examine whether this preserved global network topology could hide local reorganizations that balance out at the global network level.

Methods: We recorded high-density electroencephalograms from 20 patients and 20 controls, and reconstructed the activity of 118 regions. We computed functional connectivity in windows free of interictal epileptiform discharges in broad, delta, theta, alpha, and beta frequency bands, characterized the network topology, and used the Hub Disruption Index (HDI) to quantify the topological reorganization. We examined the generalizability of our results by reproducing a 25-electrode clinical system.

Results: Our study did not reveal any significant change in whole-brain network topology among GGE patients. However, the HDI was significantly different between patients and controls in all frequency bands except alpha (p < .01, false discovery rate [FDR] corrected, d < -1), and accompanied by an increase in connectivity in the prefrontal regions and default mode network. This reorganization suggests that regions that are important in transferring the information in controls were less so in patients. Inversely, the crucial regions in patients are less so in controls. These findings were also found in delta and theta frequency bands when using 25 electrodes (p < .001, FDR corrected, d < -1).

Significance: In GGE patients, the overall network topology is similar to that of healthy controls but presents a balanced local topological reorganization. This reorganization causes the prefrontal areas and default mode network to be more integrated and segregated, which may explain executive impairment associated with GGE. Additionally, the reorganization distinguishes patients from controls even when using 25 electrodes, suggesting its potential use as a diagnostic tool.

Keywords: clustering coefficient; electrical source imaging; global efficiency; hdEEG; homeostasis.

MeSH terms

  • Adult
  • Brain / diagnostic imaging
  • Brain Mapping
  • Electroencephalography / methods
  • Epilepsy*
  • Epilepsy, Generalized* / genetics
  • Humans
  • Magnetic Resonance Imaging / methods
  • Nerve Net / diagnostic imaging