Biocompatible and bioactivable terpolymer-lipid-MnO2 Nanoparticle-based MRI contrast agent for improving tumor detection and delineation

Mater Today Bio. 2024 Jan 17:25:100954. doi: 10.1016/j.mtbio.2024.100954. eCollection 2024 Apr.

Abstract

Early and precise detection of solid tumor cancers is critical for improving therapeutic outcomes. In this regard, magnetic resonance imaging (MRI) has become a useful tool for tumor diagnosis and image-guided therapy. However, its effectiveness is limited by the shortcomings of clinically available gadolinium-based contrast agents (GBCAs), i.e. poor tumor penetration and retention, and safety concerns. Thus, we have developed a novel nanoparticulate contrast agent using a biocompatible terpolymer and lipids to encapsulate manganese dioxide nanoparticles (TPL-MDNP). The TPL-MDNP accumulated in tumor tissue and produced paramagnetic Mn2+ ions, enhancing T1-weight MRI contrast via the reaction with H2O2 rich in the acidic tumor microenvironment. Compared to the clinically used GBCA, Gadovist®1.0, TPL-MDNP generated stronger T1-weighted MR signals by over 2.0-fold at 30 % less of the recommended clinical dose with well-defined tumor delineation in preclinical orthotopic tumor models of brain, breast, prostate, and pancreas. Importantly, the MRI signals were retained for 60 min by TPL-MDNP, much longer than Gadovist®1.0. Biocompatibility of TPL-MDNP was evaluated and found to be safe up to 4-fold of the dose used for MRI. A robust large-scale manufacturing process was developed with batch-to-batch consistency. A lyophilization formulation was designed to maintain the nanostructure and storage stability of the new contrast agent.

Keywords: Biocompatibility; Biodistribution and kinetics; MRI contract agent; Manganese dioxide nanoparticles; Tumor imaging.