Attention-Deficit/Hyperactivity Disorder (ADHD) symptom profiles are known to undergo changes throughout development, rendering the neurobiological assessment of ADHD challenging across different developmental stages. Particularly in young children (ages 4 to 7 years), measuring inhibitory control network activity in the brain has been a formidable task due to the lack of child-friendly functional Magnetic Resonance Imaging (fMRI) paradigms. This study aims to address these difficulties by focusing on measuring inhibitory control in very young children within the MRI environment. A total of 56 children diagnosed with ADHD and 78 typically developing (TD) 4-7-year-old children were examined using a modified version of the Kiddie-Continuous Performance Test (K-CPT) during BOLD fMRI to assess inhibitory control. We concurrently evaluated their performance on the established and standardized K-CPT outside the MRI scanner. Our findings suggest that the modified K-CPT effectively elicited robust and expected brain activity related to inhibitory control in both groups. Comparisons between the two groups revealed subtle differences in brain activity, primarily observed in regions associated with inhibitory control, such as the inferior frontal gyrus, anterior insula, dorsal striatum, medial pre-supplementary motor area (pre-SMA), and cingulate cortex. Notably, increased activity in the right anterior insula was associated with improved response time (RT) and reduced RT variability on the K-CPT administered outside the MRI environment, although this did not survive statistical correction for multiple comparisons. In conclusion, our study successfully overcame the challenges of measuring inhibitory control in very young children within the MRI environment by utilizing a modified K-CPT during BOLD fMRI. These findings shed light on the neurobiological correlates of inhibitory control in ADHD and TD children, provide valuable insights for understanding ADHD across development, and potentially inform ADHD diagnosis and intervention strategies. The research also highlights remaining challenges with task fMRI in very young clinical samples.