lncRNA CYTOR promotes lung adenocarcinoma gemcitabine resistance and epithelial-mesenchymal transition by sponging miR-125a-5p and upregulating ANLN and RRM2

Acta Biochim Biophys Sin (Shanghai). 2024 Feb 25;56(2):210-222. doi: 10.3724/abbs.2023287.

Abstract

Lung adenocarcinoma (LUAD) is one of the most aggressive types of lung cancer. The prognosis of LUAD patients remains poor, and the overall efficacy of gemcitabine-based chemotherapy is still unsatisfactory. Long noncoding RNAs (lncRNAs) play important roles in several cancer types by interacting with multiple proteins, RNA, and DNA. However, the relationship between lncRNA dysregulation and gemcitabine resistance in LUAD has not been fully elucidated. In this study, lncRNA CYTOR expression and its association with the prognosis of LUAD patients are assessed by quantitative RT-PCR and Kaplan-Meier survival analysis. In vitro and in vivo functional studies are conducted to evaluate the biological functions of CYTOR in LUAD. The underlying mechanism regarding the tumor-promoting effects of CYTOR is explored using RNA immunoprecipitation, biotin-labelled RNA pulldown, luciferase reporter assays, and western blot analysis. We identify that CYTOR is an oncogenic lncRNA and is apparently upregulated in LUAD by analysing TCGA-LUAD data. High CYTOR expression is a poor prognostic factor for LUAD. Functional studies reveal that CYTOR confers LUAD cells with stronger resistance to gemcitabine treatment and upregulates the expression levels of epithelial-mesenchymal transition (EMT)-related proteins. Mechanically, CYTOR acts as a competitive endogenous RNA (ceRNA) to absorb miR-125a-5p, weakens the antitumor function of miR-125a-5p, and ultimately upregulates ANLN and RRM2 expressions. Taken together, this study explains the mechanism of lncRNA in the gemcitabine resistance of LUAD and formulates a theoretical framework for the in depth study of LUAD.

Keywords: CYTOR; chemoresistance; lung adenocarcinoma; miR-125a-5p.

MeSH terms

  • Adenocarcinoma* / genetics
  • Cell Line, Tumor
  • Cell Proliferation / genetics
  • Epithelial-Mesenchymal Transition / genetics
  • Gemcitabine
  • Gene Expression Regulation, Neoplastic
  • Humans
  • Lung / metabolism
  • Lung Neoplasms* / drug therapy
  • Lung Neoplasms* / genetics
  • Lung Neoplasms* / pathology
  • MicroRNAs* / genetics
  • MicroRNAs* / metabolism
  • RNA, Long Noncoding* / genetics
  • RNA, Long Noncoding* / metabolism

Substances

  • MicroRNAs
  • Gemcitabine
  • RNA, Long Noncoding

Grants and funding

This work was supported by the grants from the National Natural Science Foundation of China (Nos. 82072725 and 81872042 to X.C.),