Fire sparks upslope range shifts of North Cascades plant species

Ecology. 2024 Mar;105(3):e4242. doi: 10.1002/ecy.4242. Epub 2024 Jan 25.

Abstract

As ongoing climate change drives suitable habitats to higher elevations, species ranges are predicted to follow. However, observed range shifts have been surprisingly variable, with most species differing in rates of upward shift and others failing to shift at all. Disturbances such as fires could play an important role in accelerating range shifts by facilitating recruitment in newly suitable habitats (leading edges) and removing adults from areas no longer suited for regeneration (trailing edges). To date, empirical evidence that fires interact with climate change to mediate elevational range shifts is scarce. Resurveying historical plots in areas that experienced climate change and fire disturbance between surveys provides an exciting opportunity to fill this gap. To investigate whether species have tended to shift upslope and if shifts depend on fires, we resurveyed historical vegetation plots in North Cascades National Park, Washington, USA, an area that has experienced warming, drying, and multiple fires since the original surveys in 1983. We quantified range shifts by synthesizing across two lines of evidence: (1) displacement at range edges and the median elevation of species occurrences, and (2) support for the inclusion of interactions among time, fire and elevation in models of species presence with elevation. Among species that experienced fire since the original survey, a plurality expanded into new habitats at their upper edge. In contrast, a plurality of species not experiencing fire showed no evidence of shifts, with the remainder exhibiting responses that were variable in magnitude and direction. Our results suggest that fires can facilitate recruitment at leading edges, while species in areas free of disturbance are more likely to experience stasis.

Keywords: climate change; climate disequilibrium; leading edge; prescribed burn; range stasis; resurvey; trailing edge; transient dynamics; wildfire.

MeSH terms

  • Climate Change
  • Ecosystem*
  • Forests*
  • Trees / physiology
  • Washington