Objectives: Despite the longstanding importance of grasping adaptations in theories of primate evolution, quantitative data on primate grasping strength remain rare. We present the results of two studies testing the prediction that callitrichines-given their comparative retreat from a small-branch environment and specialization for movement and foraging on tree trunks and large boughs-should be characterized by weaker grasping forces and underdeveloped digital flexor muscles relative to other platyrrhines.
Methods: First, we directly measured manual grasping strength in marmosets (Callithrix jacchus) and squirrel monkeys (Saimiri boliviensis), using a custom-constructed force transducer. Second, we reanalyzed existing datasets on the fiber architecture of forearm and leg muscles in 12 platyrrhine species, quantifying digital flexor muscle physiological cross-sectional area (i.e., PCSA, a morphometric proxy of muscle strength) relative to the summed PCSA across all forearm or leg muscles.
Results: Callithrix was characterized by lower mean and maximum grasping forces than Saimiri, and callitrichines as a clade were found to have relatively underdeveloped manual digital flexor muscle PCSA. However, relative pedal digital flexor PCSA did not significantly differ between callitrichines and other platyrrhines.
Conclusions: We found partial support for the hypothesis that variation in predominant substrate usage explains variation in empirical measurements of and morphological correlates of grasping strength in platyrrhines. Future research should extend the work presented here by (1) collecting morphological and empirical metrics of grasping strength in additional primate taxa and (2) extending performance testing to include empirical measures of primate pedal grasping forces as well.
Keywords: fine-branch niche; grip; muscle architecture; performance; physiological cross-sectional area.
© 2024 The Authors. American Journal of Biological Anthropology published by Wiley Periodicals LLC.