Dihydrotestosterone induces arterial stiffening in female mice

Biol Sex Differ. 2024 Jan 23;15(1):9. doi: 10.1186/s13293-024-00586-3.

Abstract

Background: Androgens are important sex hormones in both men and women and are supplemented when endogenous levels are low, for gender transitioning, or to increase libido. Androgens also circulate at higher levels in women with polycystic ovarian syndrome, a condition that increases the risk for cardiovascular diseases including hypertension and arterial stiffness. Since our previous work shows an important role for the G protein-coupled estrogen receptor (GPER) in arterial stiffness, we hypothesized that other hormones including androgens may impact arterial stiffness in female mice via downregulation of GPER.

Methods: The impact of the non-aromatizable androgen dihydrotestosterone (DHT), the glucocorticoid dexamethasone, and the progestin medroxyprogesterone acetate (all 100 nM for 24 h) on GPER and ERα expression was assessed in cultured vascular smooth muscle cells using droplet digital PCR (ddPCR). To assess the in vivo impact of the DHT-induced downregulation of GPER, female ovary-intact C57Bl/6 mice at 15-16 weeks of age were treated with silastic capsules containing DHT for 4 weeks, one with a dosage expected to mimic human male DHT levels and another to double the expected human concentration (n = 8-9/group).

Results: In cultured vascular smooth muscle cells, GPER mRNA was decreased by DHT (P = 0.001) but was not impacted by dexamethasone or medroxyprogesterone. In contrast, ERα expression in cultured cells was significantly suppressed by all three hormones (P < 0.0001). In control mice or mice treated with a single or double dose of DHT, a dose-dependent increase in body weight was observed (control 22 ± 2 g, single dose 24 ± 2 g, double dose 26 ± 2 g; P = 0.0002). Intracarotid stiffness measured via pulse wave velocity showed a more than two-fold increase in both DHT-treated groups (control 1.9 ± 0.3 m/s, single dose 4.3 ± 0.8 m/s, double dose 4.8 ± 1.0 m/s). This increase in arterial stiffness occurred independent of changes in blood pressure (P = 0.59). Histological analysis of aortic sections using Masson's trichrome showed a significant decrease in collagen between the control group (24 ± 5%) and the double dose group (17 ± 3%, P = 0.007), despite no changes in aortic wall thickness or smooth muscle content. Lastly, ddPCR showed that in vivo DHT treatment decreased aortic expression of both GPER (control 20 ± 5, single dose 10.5 ± 5.6, double dose 10 ± 4 copies/ng; P = 0.001) and ERα (control 54 ± 2, single dose 24 ± 13, and double dose 23 ± 12 copies/ng; P = 0.003).

Conclusions: These findings indicate that androgen promotes arterial stiffening and cardiovascular damage in female mice and is associated with decreased estrogen receptor expression. These data are important for transgender men, women using testosterone for fitness or reduced libido, as well as patients with polycystic ovarian syndrome.

Keywords: Arterial stiffness; Estrogen receptors; Gender-affirming therapy; Hormones; Polycystic ovarian syndrome; Testosterone.

Plain language summary

The current study investigated the impact of other hormones on estrogen receptor expression and its impact on vascular health. In both cultured vascular cells and in vivo vascular tissue, dihydrotestosterone decreased the expression of estrogen receptors. Female mice treated with dihydrotestosterone also displayed increased body weight and arterial stiffness despite no change in blood pressure. These findings indicate that increases in testosterone may impact vascular health, which may be important clinically for transgender men, women using testosterone for fitness or reduced libido, as well as patients with polycystic ovarian syndrome.

MeSH terms

  • Androgens
  • Animals
  • Dexamethasone
  • Dihydrotestosterone*
  • Estrogen Receptor alpha
  • Estrogens
  • Female
  • Humans
  • Infant, Newborn
  • Male
  • Mice
  • Polycystic Ovary Syndrome*
  • Pulse Wave Analysis
  • Receptors, Estrogen

Substances

  • Dihydrotestosterone
  • Androgens
  • Estrogen Receptor alpha
  • Estrogens
  • Receptors, Estrogen
  • Dexamethasone